Design Example 2.2. Pad foundation with inclined eccentric load on boulder clay

1. Obtaining characteristic value of undrained shear strength

Due to conditions given in the example a decision was made to obtain dimensions of pad foundation in undrained conditions.
In purpose to obtain characteristic value of undrained shear strength $c_{u k}$ results of SPT sounding from all boreholes were used, but with application of different weights due to distance between borehole and centre of foundation. As a weight were used ratios of shortest distance between borehole and centre of foundation to the distance between considered borehole and centre of foundation.

Borehole No.	Distance $[\mathrm{m}]$	Weight factor $w[-]$
$B H 1$	26,33	0,25
$B H 2$	6,5	1
$B H 4$	12,5	0,52
$B H 11$	17,16	0,38
$B H 13$	30,83	0,21

Local values of c_{u} were obtained from empirical relation given by O. Sivrikaya and E. Togrol ${ }^{1}$: $c_{u}=4,75 N_{\text {field }}$. It was assumed that volume of soil mobilized during potential failure will not reach depth below foundation larger than B meters, so only SPT sounding results from above that depth were used in calculations.

Borehole No.	Depth $[\mathrm{m}]$	$N_{\text {field }}[-]$	Weight factor $w[-]$	$c_{u}=4,75 N_{\text {field }}[\mathrm{kPa]}$
BH1	1,8	27	0,25	128,25
	3,3	40	0,25	190
BH2	2	55	1,00	261,25
	3	52	1,00	247
	1,8	25	0,52	118,75
	3,3	33	0,52	156,75
BH11	1	43	0,38	204,25
	2	41	0,38	194,75
	3	64	0,38	304
BH13	1,7	48	0,21	228
	2,5	41	0,21	194,75
	3,5	40	0,21	190

In a case of pad foundation a volume of soil involved in limit state is large, so results of field investigation have to be averaged over this volume, as value of geotechnical parameter which govern the appearance of limit state is close to average value due to redistribution of stresses in a soil mass.
To obtain characteristic value of undrained shear strength $c_{u k}$ statistical methods were used. The characteristic value was obtained in a way that calculated probability of appearance of less favourable value governing the appearance of limit state should not be greater than 5%. This means that cautious estimate of mean value depend on obtaining mean value of geotechnical parameter from limited set of values with 95% confidence level.

According to „Designer's Guide to EN 1997-1 Eurocode 7: Geotechnical design - General rules" R. Frank, C. Baudin, R. Driscoll, M. Kavvadas, N. Krebs Ovesen, T. Orr, B. Schuppener:

[^0]$\mathrm{c}_{\mathrm{uk}}=\mathrm{c}_{\mathrm{um} \text { man }} \cdot\left(1-\mathrm{k}_{\mathrm{n}} \cdot \mathrm{V}_{\mathrm{cu}}\right)$
$\mathrm{C}_{\mathrm{u}, \text { mean }}$ - weighted mean
V_{cu} - coefficient of variation
k_{n} - statistical coefficient depending on number of test results, volume of ground involved in the limit state, type of sample population and statistical level of confidence
$\mathrm{V}_{\mathrm{cu}}=\mathrm{s}_{\mathrm{cu}} / \mathrm{c}_{\mathrm{umean}}$
where s_{cu} - standard deviation

Borehole No	Depth [m]	$\begin{gathered} N_{\text {field }} \\ {[-]} \end{gathered}$	Weight factor w [-]	$\begin{gathered} c_{u}=4,75 N_{\text {field }} \\ {[\mathrm{kPa}]} \end{gathered}$	$c_{u}{ }^{-} C_{\text {umean }}$	$\left(c_{u}-c_{\text {umean }}\right)^{2}$	$w \cdot\left(c_{u}-c_{\text {umean }}\right)^{2}$
BH1	1,8	27	0,25	128,25	-84,01	7058,38	1742,48
	3,3	40	0,25	190	-22,26	495,69	122,37
BH2	2	55	1,00	261,25	48,99	2399,61	2399,61
	3	52	1,00	247	34,74	1206,58	1206,58
BH4	1,8	25	0,52	118,75	-93,51	8744,90	4547,35
	3,3	33	0,52	156,75	-55,51	3081,82	1602,55
BH11	1	43	0,38	204,25	-8,01	64,23	24,33
	2	41	0,38	194,75	-17,51	306,75	116,19
	3	64	0,38	304	91,74	8415,46	3187,68
BH13	1,7	48	0,21	228	15,74	247,62	52,21
	2,5	41	0,21	194,75	-17,51	306,75	64,67
	3,5	40	0,21	190	-22,26	495,69	104,51
		$\Sigma=$	5,30			$\Sigma=$	15170,52

$c_{u, \text { mean }}=\Sigma c_{u i} \cdot w_{i} / \Sigma w_{i}=212,26 \mathrm{kPa}$
$\mathrm{s}_{\mathrm{cu}}{ }^{2}=\mathrm{V}\left((\mathrm{N} /(\mathrm{N}-1)) \cdot\left(\sum \mathrm{w}_{\mathrm{i}} \cdot\left(\left(\mathrm{cu}_{\mathrm{i}}-\mathrm{C}_{\mathrm{u}, \text { mean }}\right)^{2}\right) / \Sigma \mathrm{w}_{\mathrm{i}}\right)\right)$
$\mathrm{s}_{\mathrm{cu}}=55,87 \mathrm{kPa}$
$\mathrm{V}_{\mathrm{cu}}=55,87 / 212,26=0,26$
$\mathrm{k}_{\mathrm{n}}=0,56$ - according to Table 2.5 Values of the coefficient $k_{\text {n,mean }}$ for the assessment of a characteristic value as a 95\% reliable mean value w „Designer's Guide to EN 1997-1 Eurocode 7: Geotechnical design - General rules"
R. Frank, C. Baudin, R. Driscoll, M. Kavvadas, N. Krebs Ovesen, T. Orr, B. Schuppener.
$c_{\mathrm{uk}}=212,26 \cdot(1-0,56 \cdot 0,26)=180,98 \mathbf{k P a}$

2. Ultimate limit states

To solve the example, values of partial factors according to Design Approach 2* were used (combination of partial factors: $\mathrm{A} 1+\mathrm{M} 1+\mathrm{R} 2)$.

Patrial factors for actions		
Permanent unfavourable	γ_{G}	1,35
Variable unfavourable		
Partial factors for soil parameters		
Undrained shear strength		γ_{Q}
Partial factors for resistance		1,5
Bearing capacity	γ_{c}	1

Following dimensions of pad foundation were assumed: $B=L=3,10 m$
VERTICAL FORCE (permanent loading; characteristic value)
$\mathrm{G}_{\mathrm{v}, \mathrm{k}}=1000 \mathrm{kN}$
WEIGHT OF FOUNDATION (permanent loading; characteristic value)
$\mathrm{G}_{\text {pad }, \mathrm{k}}=\mathrm{B}^{*} \mathrm{~L}^{*} 0,8^{*} \gamma_{\text {conc }}\left(\gamma_{\text {conc }}=25 \mathrm{kN} / \mathrm{m}^{3}\right)=192,2 \mathrm{kN}$
VERTICAL FORCE (variable loading; characteristic value)
$\mathrm{Q}_{\mathrm{v}, \mathrm{k}}=750 \mathrm{kN}$
HORIZONTAL FORCE (variable loading; characteristic value)
$\mathrm{Q}_{\mathrm{h}, \mathrm{k}}=500 \mathrm{kN}$ (Attention: This force acts 2 meters above upper surface od foundation)
VERTICAL FORCE (permanent loading; design value)
$\mathrm{G}_{\mathrm{v}, \mathrm{d}}=1350 \mathrm{kN}$
WEIGHT OF FOUNDATION (permanent loading; design value)
$\mathrm{G}_{\text {pad, }, \mathrm{d}}=259,47 \mathrm{kN}$
VERTICAL FORCE (variable loading; design value)
$\mathrm{a}_{\mathrm{v}, \mathrm{d}}=1125 \mathrm{kN}$
HORIZONTAL FORCE (variable loading; design value)
$\mathrm{a}_{\mathrm{h}, \mathrm{d}}=750 \mathrm{kN}$

CHARACTERISTIC TOTAL VERTICAL FORCE
$\mathrm{G}_{\mathrm{v}, \mathrm{k}}+\mathrm{Q}_{\mathrm{v}, \mathrm{k}}+\mathrm{G}_{\mathrm{pad}, \mathrm{k}}=1942,2 \mathrm{kN}$
DESIGN TOTAL VERTICAL FORCE
$\mathrm{G}_{\mathrm{v}, \mathrm{d}}+\mathrm{Q}_{\mathrm{v}, \mathrm{d}}+\mathrm{G}_{\mathrm{pad}, \mathrm{d}}=2734,47 \mathrm{kN1}$
CHARACTERISTIC BENDING MOMENT DUE TO HORIZONTAL FORCE
$\mathrm{M}=\mathrm{a}_{\mathrm{h}, \mathrm{k}} \cdot 2 \mathrm{~m}=1000 \mathrm{kNm}$
ECCENTRICITY OF VERTIAL LOADING
$e_{B}=M /\left(G_{v, k}+Q_{v, k}+G_{\text {pad, }}\right)=0,515 m<B / 6=0,516 m$

Design value of vertical bearing resistance $\boldsymbol{R}_{\boldsymbol{d}}$ - undrained conditions

```
\(R / A^{\prime}=(\pi+2) \cdot c_{u} \cdot s_{c} \cdot b_{c} \cdot \dot{i}_{c}+q\)
\(B^{\prime}=B-2 e_{B}=2,07 m\)
\(\mathrm{L}^{\prime}=3,10 \mathrm{~m}\)
\(A^{\prime}=B^{\prime} \cdot L^{\prime}=6,42 \mathrm{~m}^{2}\)
\(\mathrm{C}_{\mathrm{uk}}=180,98 \mathrm{kPa}\)
\(\mathrm{c}_{\mathrm{ud}}=180,98 \mathrm{kPa}\)
\(\mathrm{q}=\mathrm{h} \cdot \mathrm{Y}_{\mathrm{d}}=0,8 \mathrm{~m} \cdot 21,4 \mathrm{kN} / \mathrm{m}^{3}=17,12 \mathrm{kPa}\)
Coefficient of foundation shape \(s_{c}=1+0,2 \cdot B^{\prime} \backslash L^{\prime}=1,13[-]\)
Coefficient of inclination of loading \(i_{c}=1 / 2 \cdot\left(1+V\left(1-\left(Q_{h, d} / A^{\prime} \cdot c_{u d}\right)\right)\right)=0,88[-]\)
Coefficient of inclination of foundation base \(b_{c}=1[-]\)
\(R_{k}=A^{\prime} \cdot\left[(\pi+2) \cdot c_{u k} \cdot s_{c} \cdot b_{c} \cdot i_{c}+q\right]=6050,43 \mathrm{kN}\)
\(R_{d}=R_{k} / \gamma_{R}=4321,74 k N\)
```

$R_{d} / G_{v, d}+Q_{v, d}+G_{\text {pad,d }}=4321,74 / 2734,47=1,58$
Utilization factor $\Lambda=G_{v, d}+Q_{v, d}+G_{p a a d, d} / R_{d}=2734,47 / 4321,74=0,63$

Following dimensions of footing were taken as correct! $B=L=3,10 \mathrm{~m}$

3. Serviceability limit states

Calculation of immediate settlement

To calculate immediate settlement, simplified method of elastic medium was used:
$\mathrm{S}_{\mathrm{e}}=\mu_{0} \cdot \mu_{1} \cdot \mathrm{q} \cdot \mathrm{B} / \mathrm{E}_{\mathrm{u}}$
gdzie:
S_{e} - settlement
μ_{0} - influence factor for depth
μ_{1} - influence factor for layer thickness
q - pressure
B - foundation width
E_{u} - undrained modulus of linear deformation
Settlements are considered only to depth of 2B.
Factors $\mu_{0} i \mu_{1}$ are obtained from figure beside (Figure 5.29. Improved influence factors μ_{0} and μ_{1} for saturated clays (Christian \& Carrier, 1978) in "Soil Mechanics: Basic Concepts and Improvements" A. Aysen A.A Balkema Publishers 2002).

According to this figure:
$D / B=0,8 / 3,10=0,26 \rightarrow \mu_{0}=\mathbf{0 , 9 6}$
$H / B=6,2 / 3,10=2 \rightarrow \boldsymbol{\mu}_{1}=\mathbf{0 , 5 0}$

Value of undrained modulus of linear deformation is obtained from relation:
$\mathrm{E}_{\mathrm{u}} / \mathrm{N}_{60}=1,0 \div 1,2$ (MPa) ((Butler, 1975 in „In Situ Testing In Geomechanics. The main tests." Fernando Schnaid, Taylor \& Francis 2009).
It was assumed that $\mathrm{E}_{\mathrm{u}} / \mathrm{N}_{60}=1,2$

To determine undrained modulus of linear deformation, the same statistical methods were used as in case of undrained shear strength in ultimate limit state.

Obtaining representative value of number of blows in SPT sounding

Borehole No.	Depth [m]	$\begin{gathered} N_{\text {field }} \\ {[-]} \end{gathered}$	Weight factor w [-]	$N_{\text {field }} \times[-]$	$N_{\text {field }}-N_{\text {field, mean }}$	$\left(N_{\text {field }}-N_{\text {field, mean }}\right)^{2}$	$\begin{aligned} & w \cdot\left(N_{\text {field }}-\right. \\ & \left.N_{\text {field, mean }}\right)^{2} \end{aligned}$
BH1	1,8	27	0,25	6,67	-28,85	832,53	205,52
	3,3	40	0,25	9,87	-15,85	251,34	62,05
	4,8	38	0,25	9,38	-17,85	318,75	78,69
	6,3	45	0,25	11,11	-10,85	117,80	29,08
BH2	2	55	1,00	55,00	-0,85	0,73	0,73
	3	52	1,00	52,00	-3,85	14,85	14,85
	4,5	77	1,00	77,00	21,15	447,17	447,17
	6	93	1,00	93,00	37,15	1379,85	1379,85
BH4	1,8	25	0,52	13,00	-30,85	951,95	495,01
	3,3	33	0,52	17,16	-22,85	522,29	271,59
	4,8	41	0,52	21,32	-14,85	220,63	114,73
	6,3	43	0,52	22,36	-12,85	165,22	85,91
BH11	1	43	0,38	16,29	-12,85	165,22	62,58
	2	41	0,38	15,53	-14,85	220,63	83,57
	3	64	0,38	24,24	8,15	66,36	25,14
	4,5	67	0,38	25,38	11,15	124,24	47,06
	6	97	0,38	36,74	41,15	1693,03	641,30
BH13	1,7	48	0,21	10,12	-7,85	61,68	13,00
	2,5	41	0,21	8,64	-14,85	220,63	46,52
	3,5	40	0,21	8,43	-15,85	251,34	52,99
	4,5	37	0,21	7,80	-18,85	355,46	74,94
	5,5	33	0,21	6,96	-22,85	522,29	110,12
	6,5	36	0,21	7,59	-19,85	394,17	83,10
		$\Sigma=$	10,23	555,60		$\Sigma=$	4401,76

$N_{\text {field }}=\Sigma N_{\text {field }} \cdot w_{i} / \Sigma w_{i}=54,33$
$S_{N}{ }^{2}=V\left((N /(N-1)) \cdot\left(\sum w_{i} \cdot\left(\left(N_{\text {field }}-N_{\text {field }} \text { mean }\right)^{2}\right) / \Sigma w_{i}\right)\right)$
$S_{N}=20,29$
$V_{N}=20,29 / 54,33=0,37$
$k_{n}=0,37$
$N_{\text {field }, k}=N_{\text {field, mean }} \cdot\left(1-k_{n} \cdot V_{N}\right)=54,33 \cdot(1-0,37 \cdot 0,37)=46,82$
As representative value of blows from SPT sounding were taken 47 blows.
$N_{60}=0,75 \cdot C_{r} \cdot N_{\text {field }}=0,75 \cdot 47=35,25$
$\mathrm{E}_{\mathrm{u}}=1,2 \cdot \mathrm{~N}_{60}=1,2 \cdot 35,25=42,3 \mathrm{MPa}$

To calculate pressure under foundation characteristic value of loading was used:
$\mathrm{G}_{\mathrm{v}, \mathrm{k}}+\mathrm{Q}_{\mathrm{v}, \mathrm{k}}+\mathrm{G}_{\mathrm{pad}, \mathrm{k}}=1000+750+192,2=1942,2 \mathrm{kN}$
then:
$q=1942,2 / 3,10^{2}=202,10 \mathrm{kPa}$
$S_{e}=\mu_{0} \cdot \mu_{1} \cdot q \cdot B / E_{u}=(0,96 \cdot 0,5 \cdot 202,10 \cdot 3,10) / 42300=0,007 \mathrm{~m}=7 \mathrm{~mm}$

Calculation of settlement resulting from consolidation

Settlement resulting from consolidation were calculated from relation $s_{c}=(\Delta \sigma \cdot \Delta h) / M$. The soil was divided into calculation layers. Increments of stresses caused by foundation loading in each of these layers were calculated using centre points method.

To calculate compressibility modulus a relation given by Stroud (1974) ${ }^{2}$ was used, for determining coefficient of volume changes:
$\mathrm{m}_{\mathrm{v}}=1 / \mathrm{f}_{2} \cdot \mathrm{~N}\left[\mathrm{~m}^{2} / \mathrm{MN}\right]$

Values needed to calculate it are representative values of blows from SPT sounding for each calculation layer and representative value of plasticity index.
The table below presents SPT soundings used to calculate compressibility modules for each calculation layer. Soundings marked with pluses are those which although being beyond considered range, were included in it because of localization of sounding in respect of centre of foundation.

Range	Soundings which were used(depth $[m])$	Representative number of blows
$0,00-1,80$	$B H 1(1,8), B H 2(2,0)(+), B H 4(1,8), B H 11(1,0), B H 13(1,7)$	32
$1,80-2,80$	$B H 1(3,3), B H 2(2,0), B H 4(1,8), B H 11(2,0), B H 13(2,5)$	31
$2,80-3,80$	$B H 1(3,3), B H 2(3,0), B H 4(3,3), B H 11(3,0), B H 13(3,5)$	39
$3,80-4,80$	$B H 1(4,8), B H 2(4,5), B H 4(4,8), B H 11(4,5), B H 13(4,5)$	45
$4,80-5,80$	$B H 1(4,8), B H 2(4,5)(+), B H 4(4,8), B H 13(5,5)$	38
$5,80-7,00$	$B H 1(6,3), B H 2(6,0), B H 4(6,3), B H 11(6,0), B H 11(6,5)$	51

Obtaining representative value of plasticity index

$\mathbf{I}_{\mathbf{P}}[\%]$	$\mathbf{I}_{\mathbf{P}}-\mathbf{I}_{\mathbf{P}, \text { mean }}$	$\left(\mathbf{I}_{\mathrm{P}}-\mathbf{I}_{\mathbf{P}, \text { mean }}\right)^{\mathbf{2}}$
8,5	$-3,40$	11,56
13,5	1,60	2,56
9,5	$-2,40$	5,76
14,5	2,60	6,76
13,5	1,60	2,56
11,5	$-0,14$	0,02
10,5	$-1,14$	1,31
	$\Sigma=$	30,86

$I_{p, \text { mean }}=\Sigma I_{p, i} / n=11,64 \%$
$S_{\text {ip }}{ }^{2}=(1 / n-1) \cdot \Sigma\left(l_{p, i}-I_{p, \text { mean }}\right)^{2}$
$S_{\text {lp }}=2,27 \%$
$V_{1 p}=s_{\mathrm{Ip}} / I_{\mathrm{P}, \text { mean }}=2,27 / 11,64=0,19$

[^1]$\mathrm{k}_{\mathrm{n}}=0,75$
$I_{P, k}=I_{P, \text { mean }} \cdot\left(1-k_{n} \cdot V_{I p}\right)=11,64 \cdot(1-0,75 \cdot 0,19)=9,94 \%$
Following value of plasticity index was assumed as representative value: $I_{p}=\mathbf{9 , 9 4 \%}$.

For $\mathrm{I}_{\mathrm{p}}=9,94 \rightarrow \mathrm{f}_{2}=1$

	$\underset{N}{\infty}$	$\begin{aligned} & \stackrel{\cong}{n} \\ & \dot{\sim} \\ & \underset{\sim}{n} \\ & \stackrel{\pi}{\sim} \end{aligned}$		$\frac{0}{0}$		主	$\begin{gathered} \varepsilon \\ \text { E } \\ \text { in } \end{gathered}$
1	2	3	4	5	6	7	8
0,00	0,00	1,000	202,10				
				32000	189,19	1,00	0,591
1,00	0,32	0,872	176,28				
				31000	145,43	1,00	0,469
2,00	0,65	0,567	114,57				
				39000	92,83	1,00	0,238
3,00	0,97	0,352	71,09				
				45000	58,70	1,00	0,130
4,00	1,29	0,229	46,31				
				38000	39,13	1,00	0,103
5,00	1,61	0,158	31,96				
				51000	26,90	1,20	0,063
6,20	2,00	0,108	21,84				
						$\Sigma=$	1,595

$S_{c}=16 \mathrm{~mm}$

So:
$\mathrm{S}=\mathrm{S}_{\mathrm{e}}+\mathrm{S}_{\mathrm{c}}=\mathbf{7 + 1 6 = 2 3 \mathrm { mm }}$
Because for standard construction with separate foundations total settlements of 50 mm are allowed, assumed dimensions of foundation $\mathrm{B}=\mathrm{L}=3,10 \mathrm{~m}$ are considered as correct.

[^0]: ${ }^{1}$ "Determination of undrained strength of fine-grained soils by means of SPT and its application In Turkey." O. Sivrikaya, E. Togrol, Engineering Geology 86 (2006) 52-69

[^1]: 2 "The standard penetration test in insensitive clays and soft rock" Stroud M. A. (1974) Proceedings of the $1^{\text {st }}$ European Symposium on Penetration Testing, Stockholm, Sweden, vol. 2(2), pp. 367-375

